Application of the parareal algorithm for acoustic wave propagation

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Equipe de Sismologie
Institut de Physique du Globe de Paris, France

ICNAAM, September 2009
Plan

Motivation
Parareal algorithm for acoustics
Numerical tests: homogeneous - heterogeneous media
Reducing computational cost: different spatial grids
Summary and current work
Motivation

- Context: simulation of wave propagation in complex 3D media (global, regional or reservoir scales)
 Need of accurate and long-time simulations (hundreds of λ's)
Motivation

- **Context**: simulation of wave propagation in complex 3D media (global, regional or reservoir scales)
 Need of accurate and **long-time** simulations (hundreds of λ’s)

- **Methodology**: Spectral Elements Method (SEM)
 - High accuracy and flexibility (FEM) for complex geological media
 - Spectral approximation in space, explicit solver in time (diagonal mass matrix)
 - Efficient *space* parallelization by domain decomposition
Motivation

- **Context**: simulation of wave propagation in complex 3D media (global, regional or reservoir scales)
 Need of accurate and long-time simulations (hundreds of λ’s)

- **Methodology**: Spectral Elements Method (SEM)
 - High accuracy and flexibility (FEM) for complex geological media
 - Spectral approximation in space, explicit solver in time (diagonal mass matrix)
 - Efficient *space* parallelization by domain decomposition

- **Time parallelization?**
 Parareal algorithm presents instabilities for hyperbolic equations
 (Farhat *et al*, 2003, 2006; Bal 2005)
Parareal algorithm for acoustics

\[
\begin{align*}
\frac{\partial v(x, t)}{\partial t} &= c^2 \frac{\partial^2 u(x, t)}{\partial x^2} + f(x, t), \quad x \in [0, L], \ t > 0 \\
\frac{\partial u(x, t)}{\partial t} &= v(x, t), \quad u(0, t) = u(L, t), \quad u(x, 0) = u_0, \ v(x, 0) = v_0
\end{align*}
\]
Parareal algorithm for acoustics

\[
\begin{align*}
\frac{\partial v(x, t)}{\partial t} &= c^2 \frac{\partial^2 u(x, t)}{\partial x^2} + f(x, t), \quad x \in [0, L], \ t > 0 \\
\frac{\partial u(x, t)}{\partial t} &= v(x, t), \quad u(0, t) = u(L, t), \quad u(x, 0) = u_0, \ v(x, 0) = v_0
\end{align*}
\]

Parareal algorithm (Lions, Maday & Turinici (2001)):
\(G\) coarse propagator, \(F\) fine propagator, \(\lambda_n = [u_n, v_n]^T\),

\[
\begin{align*}
\lambda_{n+1} &= G(T_n, T_{n+1}, \lambda_n) \\
\lambda_{n+1} &= F(T_n, T_{n+1}, \lambda_n) - G(T_n, T_{n+1}, \lambda_n)
\end{align*}
\]
Parareal algorithm for acoustics

\[\frac{\partial v(x, t)}{\partial t} = c^2 \frac{\partial^2 u(x, t)}{\partial x^2} + f(x, t), \quad x \in [0, L], \quad t > 0 \]

\[\frac{\partial u(x, t)}{\partial t} = v(x, t), \quad u(0, t) = u(L, t), \quad u(x, 0) = u_0, \quad v(x, 0) = v_0 \]

Parareal algorithm (Lions, Maday & Turinici (2001)):

\(G \) coarse propagator, \(F \) fine propagator, \(\lambda_n = [u_n, v_n]^T \),

\[
\lambda_{n+1}^{k+1} = G(T_n, T_{n+1}, \lambda_n^{k+1}) + F(T_n, T_{n+1}, \lambda_n^k) - G(T_n, T_{n+1}, \lambda_n^k)
\]

prediction

\[\lambda_{n+1} = \left\{ \begin{array}{c}
G(T_n, T_{n+1}, \lambda_{n+1}^{k+1}) + F(T_n, T_{n+1}, \lambda_n^k) - G(T_n, T_{n+1}, \lambda_n^k)
\end{array} \right\}
\]

correction
Parareal algorithm for acoustics

\[
\frac{\partial v(x, t)}{\partial t} = c^2 \frac{\partial^2 u(x, t)}{\partial x^2} + f(x, t), \quad x \in [0, L], \ t > 0
\]

\[
\frac{\partial u(x, t)}{\partial t} = v(x, t), \quad u(0, t) = u(L, t), \quad u(x, 0) = u_0, \ v(x, 0) = v_0
\]

Parareal algorithm (Lions, Maday & Turinici (2001)):

\(G \) coarse propagator, \(F \) fine propagator, \(\lambda_n = [u_n, v_n]^T \),

\[
\lambda_{n+1}^{k+1} = G(T_n, T_{n+1}, \lambda_n^{k+1}) + F(T_n, T_{n+1}, \lambda_n^k) - G(T_n, T_{n+1}, \lambda_n^k)
\]

\(\lambda_n^{k+1} \) in parallel, \(\lambda_n^k \) sequential.
Parareal algorithm for acoustics

Time-discontinuous Galerkin: variational formulation *in time*

Hulbert & Hughes (1988, 1992); Li & Wiberg (1995); Kunthong & Thompson (2005)....

\[
\begin{align*}
\text{Find } u, v \in V_h = \hat{y}_h \in S_h (P_p (I_n)) \text{ such that for all } w, \quad \int_{I_n} w u \cdot (M \dot{v} + Ku - F) \, dt + \int_{I_n} w v \cdot (K (\dot{u} - v)) \, dt + w u_n \cdot [u] + w v_n \cdot [v] &= 0
\end{align*}
\]

from Wiberg & Li (1996)
Parareal algorithm for acoustics

Time-discontinuous Galerkin : variational formulation in time

Find $u, v \in \mathcal{V}_h = \{ y^h \in \bigcup_h (P^p(l_n)) \}$ such that for all $w_u, w_v \in \mathcal{V}_h$,

$$
\int_{l_n} w_v \cdot (M \dot{v} + Ku - F) dt + \int_{l_n} w_u \cdot (K(\dot{u} - v)) dt + w_{u_n} \cdot K[u_n] + w_{v_n} \cdot M[v_n] = 0
$$

where $l_n = (t_n, t_{n+1})$ and $[u_n] = u^+_n - u^-_n$ is the 'jump' at time t_n.

Fig. 2. Illustration of the space–time DG finite element method.

from Wiberg & Li (1996)
Numerical test: 1D wave propagation - Ricker source

Spectral Elements Method (GLL points). Periodic boundary conditions

Time advance:
- Newmark for both coarse and fine
- TDG for coarse, Newmark for fine
- TDG for both coarse and fine

Physical parameters:

\[v = 2000 \, \text{m/s} \]
\[f_0 = 2.5 \, \text{Hz} \]
\[x_0 = 2500 \, \text{m} \]
Numerical test: 1D wave propagation - Ricker source

Spectral Elements Method (GLL points). Periodic boundary conditions

Time advance:
- Newmark for both coarse and fine
- TDG for coarse, Newmark for fine
- TDG for both coarse and fine

Physical parameters:
\[v = 2000 \text{ m/s} \]
\[f_0 = 2.5 \text{ Hz} \]
\[x_0 = 2500 \text{ m} \]

Parareal parameters:
Total simul time \(T = 5 \text{ s} \)
50 time slices \(\Delta T = 0.1 \text{ s} \)
Coarse solver \(DT = 4.e-4 \text{ s} \)
Fine solver \(dt = 2.e-5 \text{ s} \)

Mesh parameters:
50 elements, 6 GLL \(\rightarrow \) \(\text{CFL}_{Coa} = 0.68 \), \(\text{CFL}_{Fin} = 0.034 \)
Numerical test: 1D wave propagation - Ricker source

Explicit Newmark for both coarse and fine solvers

![Graph showing error vs. time slice number]
Numerical test: 1D wave propagation - Ricker source

TDG for coarse solver, Explicit Newmark for fine solver
Numerical test: 1D wave propagation - Ricker source

TDG for both coarse and fine solvers

[Graph showing error vs. time slice number for different iterations]

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Parallel Speed-Up

\[
S_p = \frac{T}{(k + 1) \frac{T}{Dt} + k \frac{\Delta T}{dt}} = \frac{1}{(k + 1) \frac{dt}{Dt} + k \frac{\Delta T}{T}},
\]

using \(P = \frac{T}{\Delta T} \),

\[
S_p = \frac{P}{(k + 1) P \frac{dt}{Dt} + k}
\]
Parallel Speed-Up

\[S_p = \frac{T}{dt} \left(k + 1 \right) + k \frac{\Delta T}{dt} = \frac{1}{(k + 1)\frac{dt}{Dt} + k \frac{\Delta T}{T}} , \]

using \[P = \frac{T}{\Delta T} , \]

\[S_p = \frac{P}{(k + 1)P\frac{dt}{Dt} + k} \]

In the previous case, \[Dt/dt = 20, \, P = 50, \, k = 2 \quad \rightarrow \quad S_p = 5.3 \]
Parallel Speed-Up

\[S_p = \frac{\frac{T}{dt}}{(k + 1)\frac{T}{Dt} + k\frac{\Delta T}{dt}} = \frac{1}{(k + 1)\frac{dt}{Dt} + k\frac{\Delta T}{T}} \]

using \(P = \frac{T}{\Delta T} \),

\[S_p = \frac{P}{(k + 1)P\left(\alpha\frac{dt}{Dt}\right) + k} \]

In the previous case, \(Dt/dt = 20, P = 50, k = 2 \) \(\rightarrow S_p = 5.3 \)
In order to reduce the relative \textit{per-step} cost (α) of $F_{\Delta T}$ and $G_{\Delta T}$, two strategies are proposed:
In order to reduce the relative per-step cost (α) of $F_{\Delta T}$ and $G_{\Delta T}$, two strategies are proposed:

1. Simplified physical model for the coarse solver
Numerical test : 1D wave propagation - Ricker source

In order to reduce the relative per-step cost \((\alpha)\) of \(\mathcal{F}_{\Delta T}\) and \(\mathcal{G}_{\Delta T}\),

Two strategies are proposed:

1. Simplified physical model for the coarse solver
2. Coarser spatial grid resolution in the coarse solver
Reducing coarse simulation cost: 1) simpler physics

Acoustic homogeneization (Capdeville, Guillot & Marigo, 2009)

At order 0, we solve

$$\rho^* \partial_{tt} u^0 - \partial_x \sigma^0 = f$$

$$\sigma^0 = E^* \partial_x u^0$$

with

$$E^*(x) = \left(F_{k_0} \left(\frac{1}{E} \right) \right)^{-1}(x)$$

$$\rho^*(x) = F_{k_0}^*(\rho)(x)$$

where F_{k_0} is a low-pass filter defined by a cut-off wavenumber k_0.
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium Coarse: homogeneized medium

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte
Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium Coarse: homogenized medium

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte
Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium Coarse: homogenized medium

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte
Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium
Coarse: homogeneized medium

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium

Coarse: homogeneized medium

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium

Coarse: homogeneous medium
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium

Coarse: Homogeneous medium

Parareal algorithm for acoustic wave propagation

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal – Sequential

iteration 0

iteration 1
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium
Coarse: homogeneous medium

Diego Mercerat, Laurent Guillot, and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium Coarse: homogeneous medium

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium

Coarse: homogeneous medium

Homogenous medium for coarse solver is not enough!!
Reducing coarse simulation cost: 2) different spatial grids

\[\lambda_{n+1}^{k+1} = \Pi^N_M G(\Pi^M_N \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi^N_M G(\Pi^M_N \lambda_n^k) \]

where \(\Pi^N_M \) is the L2-prolongation operator from \(\mathcal{P}^M \) to \(\mathcal{P}^N \) \((M < N)\), \(\Pi^M_N \) is the L2-restriction operator from \(\mathcal{P}^N \) to \(\mathcal{P}^M \).
Reducing coarse simulation cost: 2) different spatial grids

\[\lambda_{n+1}^{k+1} = \Pi_M^N G(\Pi_N^M \lambda_n^{k+1}) + F(\lambda_n^k) - \Pi_M^N G(\Pi_N^M \lambda_n^k) \]

where

- \(\Pi_M^N \) is the L2-prolongation operator from \(P^M \) to \(P^N \) (\(M < N \)),
- \(\Pi_N^M \) is the L2-restriction operator from \(P^N \) to \(P^M \).

\[\int_{\Lambda} (u^c - u^f) \phi_j \, dx = 0 \quad \text{for all} \quad \phi_j \in P^{M-2}, u^c \in P^M, u^f \in P^N \]

\[\int_{\Lambda} u^c \phi_j \, dx = \int_{\Lambda} u^f \phi_j \, dx \]
Reducing coarse simulation cost: 2) different spatial grids

$$\lambda_{n+1}^{k+1} = \nabla_{M}^{N} G(\nabla_{N}^{M} \lambda_{n}^{k+1}) + F(\lambda_{n}^{k}) - \nabla_{M}^{N} G(\nabla_{N}^{M} \lambda_{n}^{k})$$

where ∇_{M}^{N} is the L2-prolongation operator from \mathcal{P}^{M} to \mathcal{P}^{N} ($M < N$), ∇_{N}^{M} is the L2-restriction operator from \mathcal{P}^{N} to \mathcal{P}^{M}.

$$\int_{\Lambda} (\mathbf{u}^{c} - \mathbf{u}^{f}) \phi_{j} \, dx = 0 \quad \text{for all} \quad \phi_{j} \in \mathcal{P}^{M-2}, \mathbf{u}^{c} \in \mathcal{P}^{M}, \mathbf{u}^{f} \in \mathcal{P}^{N}$$

$$\int_{\Lambda} \mathbf{u}^{c} \phi_{j} \, dx = \int_{\Lambda} \mathbf{u}^{f} \phi_{j} \, dx$$

using GLL quadrature rules ($\{\eta_{k}\}_{0}^{M}$ for l.h.s. and $\{\xi_{k}\}_{0}^{N}$ for r.h.s.),

$$\sum_{k=0}^{M} \rho_{k}^{c} \phi_{j}(\eta_{k}) \mathbf{u}_{k}^{c} = \sum_{k=0}^{N} \rho_{k}^{f} \phi_{j}(\xi_{k}) \mathbf{u}_{k}^{f}.$$
Reducing coarse simulation cost : 2) different spatial grids

$$\lambda_{n+1}^{k+1} = \Pi_N^M G(\Pi_N^M \lambda_n^{k+1}) + F(\lambda_n^k) - \Pi_N^M G(\Pi_N^M \lambda_n^k)$$

where Π_N^M is the L2-prolongation operator from \mathcal{P}^M to \mathcal{P}^N ($M < N$), Π_N^M is the L2-restriction operator from \mathcal{P}^N to \mathcal{P}^M.

$$\int_{\Lambda} (u^c - u^f) \phi_j \, dx = 0 \quad \text{for all} \quad \phi_j \in \mathcal{P}^{M-2}, u^c \in \mathcal{P}^M, u^f \in \mathcal{P}^N$$

$$\int_{\Lambda} u^c \phi_j \, dx = \int_{\Lambda} u^f \phi_j \, dx$$

using GLL quadrature rules ($\{\eta_k\}_0^M$ for l.h.s. and $\{\xi_k\}_0^N$ for r.h.s.),

$$\sum_{k=0}^{M} \rho_f^c \phi_j(\eta_k) u^c_k = \sum_{k=0}^{N} \rho_f^f \phi_j(\xi_k) u^f_k.$$
Reducing coarse simulation cost: 2) different spatial grids

\[\lambda_{n+1}^{k+1} = \Pi_M^N G(\Pi_N^M \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi_M^N G(\Pi_N^M \lambda_n^k) \]

where \(\Pi_M^N \) is the L2-prolongation operator from \(P^M \) to \(P^N \) (\(M < N \)), \(\Pi_N^M \) is the L2-restriction operator from \(P^N \) to \(P^M \).

\[\int \Lambda (u^c - u^f) \phi_j \; dx = 0 \quad \text{for all} \quad \phi_j \in P^{M-2}, \; u^c \in P^M, \; u^f \in P^N \]

\[\int \Lambda u^c \phi_j \; dx = \int \Lambda u^f \phi_j \; dx \]

using GLL quadrature rules (\(\{\eta_k\}_{0}^{M} \) for l.h.s. and \(\{\xi_k\}_{0}^{N} \) for r.h.s.),

\[\sum_{k=0}^{M} \rho_k \phi_j(\eta_k) u^c_k = \sum_{k=0}^{N} \rho_k \phi_j(\xi_k) u^f_k. \]

using \(\phi_j(\eta_k) = \delta_{jk}, \; k = 1, \ldots, M - 1 \), and the edge constraints \(u^f_0 = u^c_0 \) and \(u^f_N = u^c_M \), we obtain,

\[M_c u_c = R u_f, \quad \Rightarrow \quad u_c = \Pi_N^M u_f, \quad \text{with} \quad \Pi_N^M = M_c^{-1} R. \]
Reducing coarse simulation cost: 2) different spatial grids

\[
\lambda_{n+1}^{k+1} = \Pi_M^N \mathcal{G}(\Pi_N^M \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi_M^N \mathcal{G}(\Pi_N^M \lambda_n^k)
\]

where \(\Pi_M^N\) is the L2-prolongation operator from \(\mathcal{P}^M\) to \(\mathcal{P}^N\) \((M < N)\), \(\Pi_N^M\) is the L2-restriction operator from \(\mathcal{P}^N\) to \(\mathcal{P}^M\).
Reducing coarse simulation cost: 2) different spatial grids

\[\lambda_{n+1}^{k+1} = \Pi_{NM}^N G(\Pi_{NM}^M \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi_{NM}^N G(\Pi_{NM}^M \lambda_n^k) \]

where \(\Pi_{NM}^N \) is the L2-prolongation operator from \(P^N \) to \(P^M \) (\(M < N \)), \(\Pi_{NM}^M \) is the L2-restriction operator from \(P^N \) to \(P^M \).

\[\int_{\Lambda} (u^f - u^c) \phi_j \, dx = 0 \quad \text{for all} \quad \phi_j \in P^{N-2}, u^c \in P^M, u^f \in P^N \]

\[\int_{\Lambda} u^f \phi_j \, dx = \int_{\Lambda} u^c \phi_j \, dx \]
Reducing coarse simulation cost: 2) different spatial grids

\[\lambda_{n+1}^{k+1} = \Pi_N^M G(\Pi_N^M \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi_N^M G(\Pi_N^M \lambda_n^k) \]

where \(\Pi_N^M \) is the L2-prolongation operator from \(\mathcal{P}^M \) to \(\mathcal{P}^N \) (\(M < N \)), \(\Pi_N^M \) is the L2-restriction operator from \(\mathcal{P}^N \) to \(\mathcal{P}^M \).

\[\int_{\Lambda} (u^f - u^c) \phi_j \, dx = 0 \quad \text{for all} \quad \phi_j \in \mathcal{P}^{N-2}, u^c \in \mathcal{P}^M, u^f \in \mathcal{P}^N \]

\[\int_{\Lambda} u^f \phi_j \, dx = \int_{\Lambda} u^c \phi_j \, dx \]

using fine GLL quadrature (\(\{\xi_k\}_0^N \) for both l.h.s. and r.h.s.),

\[\sum_{k=0}^{N} \rho_k^f \phi_j(\xi_k) u_k^f = \sum_{i=0}^{M} \sum_{k=0}^{N} \rho_k^f \phi_j(\xi_k) h_i(\xi_k) u_i^c. \]
Reducing coarse simulation cost: 2) different spatial grids

\[
\lambda_{n+1}^{k+1} = \Pi_N^M G(\Pi_N^M \lambda_n^k) + F(\lambda_n^k) - \Pi_N^M G(\Pi_N^M \lambda_n^k)
\]

where \(\Pi_N^M\) is the L2-prolongation operator from \(\mathcal{P}^M\) to \(\mathcal{P}^N\) \((M < N)\), \(\Pi_N^M\) is the L2-restriction operator from \(\mathcal{P}^N\) to \(\mathcal{P}^M\).

\[
\int_{\Lambda} (u^f - u^c) \phi_j \, dx = 0 \quad \text{for all } \phi_j \in \mathcal{P}^{N-2}, u^c \in \mathcal{P}^M, u^f \in \mathcal{P}^N
\]

\[
\int_{\Lambda} u^f \, \phi_j \, dx = \int_{\Lambda} u^c \, \phi_j \, dx
\]

using fine GLL quadrature (\(\{\xi_k\}_0^N\) for both l.h.s. and r.h.s.),

\[
\sum_{k=0}^N \rho_k^f \phi_j(\xi_k) u_k^f = \sum_{i=0}^M \sum_{k=0}^N \rho_k^f \phi_j(\xi_k) h_i(\xi_k) u_i^c.
\]

using \(\phi_j(\xi_k) = \delta_{jk}, k = 1, \ldots, N - 1\), and the edge constraints \(u_0^f = u_0^c\) and \(u_N^f = u_N^c\), we obtain,
Reducing coarse simulation cost: 2) different spatial grids

\[
\lambda_{n+1}^{k+1} = \Pi_N^M G(\Pi_N^M \lambda_n^{k+1}) + \mathcal{F}(\lambda_n^k) - \Pi_N^M G(\Pi_N^M \lambda_n^k)
\]

where \(\Pi_N^M\) is the L2-prolongation operator from \(\mathcal{P}^M\) to \(\mathcal{P}^N\) \((M < N)\), \(\Pi_N^M\) is the L2-restriction operator from \(\mathcal{P}^N\) to \(\mathcal{P}^M\).

\[
\int_\Lambda (u^f - u^c) \phi_j \, dx = 0 \quad \text{for all} \quad \phi_j \in \mathcal{P}^{N-2}, \ u^c \in \mathcal{P}^M, \ u^f \in \mathcal{P}^N
\]

\[
\int_\Lambda u^f \phi_j \, dx = \int_\Lambda u^c \phi_j \, dx
\]

using fine GLL quadrature \(\{\xi_k\}_0^N\) for both l.h.s. and r.h.s.,

\[
\sum_{k=0}^{N} \rho_k^f \phi_j(\xi_k) \ u_k^f = \sum_{i=0}^{M} \sum_{k=0}^{N} \rho_k^f \phi_j(\xi_k) h_i(\xi_k) \ u_i^c.
\]

using \(\phi_j(\xi_k) = \delta_{jk}, \ k = 1, \ldots, N - 1\), and the edge constraints \(u_0^f = u_0^c\) and \(u_N^f = u_M^c\), we obtain,

\[
M_f u_f = M_f P u_c, \quad \Rightarrow \quad \Pi_N^M = P, \quad \text{with} \quad (P)_{ki} = h_i(\xi_k) \quad \Rightarrow \quad \text{Interpolation operator}
\]
Reducing coarse simulation cost: 2) different spatial grids

Prolongation

Restriction
Reducing coarse simulation cost: 2) different spatial grids

Eigenvalue decomposition

\[(-\omega_j^2 M + K) u_j = 0, \quad j = 1, \ldots, N_{dof} \]

Expansion of ricker wavelet in \(\{u_j\}_{j=1}^{N_{dof}} \):

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 2) different spatial grids

Eigenvalue decomposition

\[(-\omega_j^2 M + K) \mathbf{u}_j = 0, \quad j = 1, \ldots, N_{dof} \]

Expansion of ricker wavelet in \(\{ \mathbf{u}_j \}_{j=1}^{N_{dof}} \):

Excitation of spurious modes!!
Reducing coarse simulation cost: 2) different spatial grids

Eigenvalue decomposition

\[(-\omega_j^2 M + K) u_j = 0, \quad j = 1, \ldots, N_{dof} \]

Expansion of ricker wavelet in \(\{u_j\}^{N_{dof}}_{j=1} \):
Reducing coarse simulation cost: 2) different spatial grids

Ricker wavelet in homogeneous medium (c = 2000 m/s)

Coarse solver: 50 elements - 6 GLL
Fine solver: 50 elements - 9 GLL
Reducing coarse simulation cost: 2) different spatial grids

Error at $t = 5$ sec

Spectra at $t = 5$ sec
Reducing coarse simulation cost: 2) different spatial grids
Reducing coarse simulation cost: 2) different spatial grids

Application of a low-pass filter \((f_c = 10 \text{ Hz}, \lambda_c = 200 \text{ m})\) after each Prolongation-Restriction → convergence to the fine solution
Reducing coarse simulation cost: 2) different spatial grids

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 2) different spatial grids

![Graph of Error at t = 5 sec]

![Graph of Spectra at t = 5 sec]

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Reducing coarse simulation cost: 2) different spatial grids

It is NOT an easy task to define the filter cut-off frequency (...even worse in heterogeneous media!!)

\[f_c = 8 \text{ Hz (} \lambda_c = 250 \text{ m)} \]

\[f_c = 10 \text{ Hz (} \lambda_c = 200 \text{ m)} \]

\[f_c = 20 \text{ Hz (} \lambda_c = 100 \text{ m)} \]

Diego Mercerat, Laurent Guillot and Jean Pierre Vilotte

Parareal algorithm for acoustic wave propagation
Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of **Time-Discontinuous Galerkin method**
Summary and current work

- Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of Time-Discontinuous Galerkin method.

- Satisfactory convergence properties in highly heterogeneous media → coarse solver in a homogeneized medium.

Next step: can we define Prolongation-Restriction operators that do not excite spurious frequencies?
Summary and current work

- Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of Time-Discontinuous Galerkin method

- Satisfactory convergence properties in highly heterogeneous media → coarse solver in a homogenized medium

- In order to further reduce computational costs:
 - simpler "physics" by acoustic homogeneization in coarse solver
 - different spatial grids
 → no convergence to fine solution, unless low-pass filter is applied at each time slice

Next step: can we define Prolongation-Restriction operators that do not excite spurious frequencies?
Summary and current work

- Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of Time-Discontinuous Galerkin method.

- Satisfactory convergence properties in highly heterogeneous media → coarse solver in a homogeneized medium.

- In order to further reduce computational costs:
 - simpler "physics" by acoustic homogeneization in coarse solver 😊
Summary and current work

- Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of Time-Discontinuous Galerkin method.

- Satisfactory convergence properties in highly heterogeneous media → coarse solver in a homogeneized medium.

- In order to further reduce computational costs:
 - simpler "physics" by acoustic homogeneization in coarse solver 😊
 - different spatial grids → no convergence to fine solution, unless low-pass filter is applied at each time slice 😞
Summary and current work

- Instabilities seen in the parareal algorithm for the acoustic wave equation discretized by SEM + Newmark solvers can be mitigated by the use of Time-Discontinuous Galerkin method.

- Satisfactory convergence properties in highly heterogeneous media → coarse solver in a homogeneized medium.

- In order to further reduce computational costs:
 - simpler "physics" by acoustic homogeneization in coarse solver 😊
 - different spatial grids → no convergence to fine solution, unless low-pass filter is applied at each time slice 😞

- Next step: can we define Prolongation-Restriction operators that do not excite spurious frequencies?
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium Coarse: homogenized medium

explicit Newmark time-scheme
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium

Coarse: homogeneized medium

explicit Newmark time-scheme
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium
Coarse: homogeneized medium

Parareal algorithm for acoustic wave propagation

explicit Newmark time-scheme
Reducing coarse simulation cost: 1) simpler physics

Fine: Heterogeneous medium
Coarse: Homogenized medium

explicit Newmark time-scheme
Numerical test: 1D wave propagation - Ricker source

TDG for both coarse and fine solvers.

50 seconds simulation, $Dt/dt = 20$, $\Delta T = 1\, s$